Adenosine 5'-Triphosphate Dependent Fluxes of Manganese and Hydrogen Ions in Sarcoplasmic Reticulum Vesicles[†]

Michele Chiesi* and Giuseppe Inesi

ABSTRACT: Charge displacement induced by the accumulation of Ca²⁺ ions inside sarcoplasmic reticulum vesicles may be counterbalanced by the transport of Mg²⁺ and/or K⁺ in the opposite direction [Kanazawa, T., Yamada, S., Yamamoto, T., & Tonomura, Y. (1971) J. Biochem. (Tokyo) 70, 95] or by fluxes of monovalent ions through independent channels [Zimniack P., & Racker, E. (1978) J. Biol. Chem. 253, 4631]. Alternatively, Ca²⁺ transport may be secondary to the H⁺ gradient established by a primary H+ pump [Madeira, V. M. C. (1978) Arch. Biochem. Biophys. 185, 316]. In relation to this problem, we have studied fluxes of two cations which are amenable to direct measurement in conditions relevant to Ca²⁺ transport. We studied a radioactive Mn²⁺ isotope and found that it can be used as an activator of the Ca²⁺ pump in place of Mg²⁺. We then obtained evidence excluding the participation of Mn²⁺ in a counter transport mechanism. On the contrary, this divalent cation is a weak competitor of Ca²⁺ for vectorial transport. We also confirmed that during active transport H⁺ ejection from sarcoplasmic reticulum (SR) vesicles was in excess of the H+ production caused by disso-

One of the most interesting problems in the study of the sarcoplasmic reticulum (SR) calcium pump is whether active transport of Ca²⁺ is coupled to countertransport of another cation or is electrically balanced by fluxes of other ions which are not directly coupled to the pump. In this regard, Kanazawa et al. (1971) proposed that Mg²⁺ and/or K⁺ may be exchanged for Ca²⁺ in an antiport system, thereby rendering the pump electrically silent. This proposal was based on the stimulation produced by Mg²⁺ and K⁺ on the turnover of the pump. However, fluxes of these cations were never measured directly.

A different view was taken by Zimniack & Racker (1978), who observed an increased calcium uptake by reconstituted SR vesicles in the presence of valinomycin. These authors proposed that the calcium pump is electrogenic and the consequent charge displacement is offset by electrolyte fluxes through independent channels.

Lastly, H⁺ fluxes were observed by Carvalho (1972) and later by Madeira (1978). This latter author inferred that the SR ATPase is a primay H⁺ pump and Ca²⁺ translocation is secondary to a H⁺ gradient.

With the experiments reported here, we have sought to clarify those aspects of this problem which could be studied by direct measurements of cation fluxes. Owing to the availability of a convenient radioactive Mn²⁺ isotope and the ability of Mn²⁺ to activate SR ATPase in place of Mg²⁺, we have chosen Mn²⁺ as the divalent cation to be studied in place of Mg²⁺. Furthermore, we have studied H⁺ production during

ciation of the ATPase reaction products. However, this phenomenon could not be attributed to a primary H⁺ pump, since neither H⁺ ejection nor Ca²⁺ uptake is reduced by a H⁺ ionophore (FCCP), while both phenomena are reversed by a Ca²⁺ ionophore (A 23187). In addition, in reconstituted SR vesicles, Ca2+ uptake is stimulated by FCCP as well as by valinomycin. H⁺ ejection and Ca²⁺ uptake occur with parallel kinetics and involve $\sim 1 \text{ H}^+/1 \text{ Ca}^{2+}$ in the first second of the reaction at pH 6.1. Furthermore, titration of high-affinity Ca²⁺ binding sites of the SR preparation with Ca²⁺ releases H⁺ (at pH 6.0 the ratio between Ca²⁺ bound and H⁺ liberated is ~ 1). Our experiments indicate that the Ca²⁺ pump does not include countertransport of divalent cations (e.g., Mg²⁺). Rather, it is likely that H⁺ is exchanged for Ca²⁺ in the transport cycle. The charge equivalent ratio of the H⁺/Ca²⁺ exchange depends on the pK of the carrier and the intravesicular pH but tends to be less than 0.5 near neutrality. Therefore, Ca²⁺ transport will produce net charge displacement if not compensated for by K+ and Cl- fluxes through independent channels or by K⁺ countertransport.

transport activity and maximized the information on this phenomenon by the use of rapid kinetics instrumentation.

Materials and Methods

Biological Materials. Sarcoplasmic reticulum vesicles were isolated from rabbit white skeletal muscle as previously described by Eletr & Inesi (1972).

Reconstituted ATPase vesicles were prepared after Triton X-100 solubilization essentially as described by Chiesi et al. (1978). Typically, 30 mg of SR vesicles (10 mg/mL) was partially solubilized at 0 °C by the addition of 1 mg of Triton X-100 per mg of protein in 10 mM Tris-HCl (pH 7.5), 1.5 mM MgCl₂, 1 mM EDTA, 0.1 mM CaCl₂, 0.02% NaN₃, and 500 mM KCl (reconstitution buffer). After centrifugation, the clear supernatant was combined with 60 mg of crude soybean phosphatidylcholine (commercial grade, Sigma Chemical Co.), which was previously solubilized in 6 mL of the above buffer with the aid of a sonicator and in the presence of 2 mg of triton per mg of lipid. The detergent was removed by passing the mixture through a Bio-Bead SM-2 column (2.5) × 40 cm) equilibrated and eluted at room temperature with reconstitution medium at a rate of 25-35 mL/h. After elution, the reconstituted vesicles were centrifuged for 40 min at 38 000 rpm (Beckman Ti 50 rotor) and resuspended in ice-cold reconstitution buffer (1-2 mg/mL). Vesicles were immediately used after preparation. Overnight storage usually produced loss of Ca²⁺ uptake capacity.

Protein concentration was determined by the method of Lowry et al. (1951) with bovine serum albumin as the standard. Phospholipids were determined by using a modification of the procedure of Chen et al. (1956). The phospholipid/protein ratio of reconstituted ATPase vesicles was usually 3.5-4.5.

Cation Fluxes. The composition of reaction mixtures for

[†]From the Laboratory of Physiology and Biophysics, University of the Pacific, San Francisco, California 94115. *Received November 19, 1979*. This work was supported by the National Institutes of Health (HL-16607). M.C. is the recipient of a National Institutes of Health Fogarty International Fellowship (TWO 2588-02) and was partially supported by the Swiss Nationalfonds (5 521 330 615/7).

cation flux measurements is described in the legends to the figures. If not stated otherwise, biological material (SR or reconstituted vesicles) was preincubated for 5–10 min in the reaction buffer. Reactions were started with addition of substrates [ATP, ITP, or acetyl phosphate (AcP)].

All experiments were carried out at room temperature. Ca^{2+} uptake by SR vesicles or reconstituted membranes was measured by using the Millipore filtration procedure (Martonosi & Feretos, 1964) and a 45 Ca radioactive tracer. Aliquots of the reaction mixture (50–100 μ L) were filtered and immediately washed with ice-cold medium containing 2 mM LaCl₃ (Chiesi & Inesi, 1979).

Mn²⁺ fluxes were determined similarly to Ca²⁺ fluxes by using a ⁵⁴Mn radioactive tracer. H⁺ fluxes were measured by using proton indicators and a dual-wavelength spectrophotometer. Phenol red (100 μ M) was used for pH ranges between 6.5 and 7.5 with wavelength monochromators set at 560 and 600 μ m. At lower pH ranges (5.5–6.5), the reaction mixture contained 40 μ M chlorphenol red and a wavelength pair of 488 and 577 nm was chosen.

Rapid Kinetic Measurements. Ca2+ uptake measurements were carried out in a Dionex D-133 multimixing apparatus as previously described (Verjovski-Almeida et al., 1978). The reaction mixture contained 80 mM KCl, 5 mM MgCl₂, 40 µM chlorphenol red, 100 μ M ⁴⁵CaCl₂, and 1.5 mM Mes, ¹ pH 6.1. Syringes A and B were supplemented with SR protein (2) mg/mL) and ATP (500 μ M), respectively. Syringe C contained the quench reagent (10 mM EGTA in 80 mM KCl, 5 mM MgCl₂, and 20 mM Mops, pH 6.9). Uptake reactions were quenched at serial intervals of time (40-5000 ms), and samples were rapidly filtered. The 45Ca content of the filtrate was measured in a scintillation counter. Proton fluxes were measured under identical conditions with the aid of a Dionex D-137 dual-detector stopped-flow spectrophotometer; 630- and 577-nm filters were chosen. The spectrophotometer was interfaced with a Northstar Horizon computer, which was programmed to store, amplify, and subtract series of data for oscilloscope display. Syringe A contained the SR solution supplemented or not with 0.2% Triton X-100 (leaky and intact vesicles, respectively), and syringe B contained buffer solution supplemented or not with ATP (500 μ M). For each curve a base line (in the absence of ATP) was obtained and subtracted from the experimental data.

Measurement of H⁺ Release from SR Vesicles during Passive Binding of Ca²⁺. (a) Removal of Endogenous Ca²⁺. The SR vesicles were washed and suspended at a concentration of 10–15 mg of protein per mL in 80 mM KCl, 5 mM MgCl₂, and 2 mM MoPS (pH 6.5). Three to five milliliters of the suspension was layered on top of a Chelex X-100 column (1 × 40 cm) which had been preequilibrated at room temperature with the same medium. After elution (150-200 mL/h), the vesicles were collected and diluted to 2-3 mg/mL and the pH was adjusted to 6.0. Total Ca²⁺ contamination in the untreated SR suspension was 15-40 nmol of Ca²⁺ per mg of protein, as determined by atomic adsorption spectroscopy. The removal of endogenous Ca²⁺ was checked by adding radioactive-labeled ⁴⁵Ca to the vesicles previous the the Chelex treatment. After chromatography the residual Ca2+ was always less or equal to 0.5 nmol/mg of protein.

(b) Titration. Eight to ten milliliters of the Chelex X-100 treated SR vesicles was kept at room temperature under a N₂

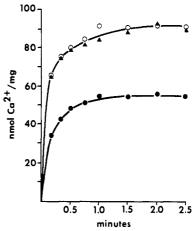


FIGURE 1: Mg^{2+} and Mn^{2+} stimulation of Ca^{2+} translocation by SR vesicles. The reaction mixture contained 80 mM KCl, 20 mM Mops, pH 6.9, 100 μ M [45 Ca]CaCl₂, 220 μ g of SR per mL (\bullet), and 0.5 mM MgCl₂ (O) or 0.5 mM MnCl₂ (Δ). After 10 min preincubation at room temperature, the uptake reaction was initiated by the addition of 0.5 mM ATP. 45 Ca translocation was determined with the Millipore filtration technique.

atmosphere. A trace amount of 45 Ca was added to the stirred suspension, and the pH was kept at 6.0 with the use of a pH stat (Metrohm, Herisau). Known aliquots of CaCl₂ (usually 5 or 10 μ L of a 5 mM CaCl₂ solution) were added sequentially to the suspension. After each addition the H⁺ released was titrated automatically with 1 mM NaOH. Thereafter, aliquots of 500 μ L were withdrawn and filtered. The radioactivity contained in nonfiltered and filtered suspensions was used to calculate the amount of Ca²⁺ free or bound to the SR vesicles after each addition of Ca²⁺.

Results

Mn²⁺ Fluxes. An important suggestion regarding charge displacement by the Ca²⁺ pump of SR is that Ca²⁺ may be exchanged for Mg²⁺ in each cycle of active transport (Kanazawa et al., 1971). This suggestion is based on a Mg²⁺ requirement for hydrolytic cleavage of a phosphorylated enzyme intermediate, which is a recycling step for the ATPase reaction coupled to the Ca²⁺ pump. However, direct evidence is lacking, as measurement of Mg²⁺ fluxes under conditions relevant to Ca²⁺ transport is quite difficult. For this reason, we have replaced Mg²⁺ with Mn²⁺ since the latter is available in the form of a convenient radioactive isotope and is known to activate Ca²⁺ transport in place of Mg²⁺ (Yamada & Tonomura, 1972).

Figure 1 shows the time dependency of the Ca^{2+} translocation by the SR vesicles in the presence of ATP. The contaminant Mg in the reaction mixture is 5–10 μ M, as determined by atomic adsorption spectroscopy. When the reaction mixture is supplemented with 0.5 mM MnCl₂, the Ca^{2+} uptake reaction occurs within a time and with a magnitude which are similar to those observed in the presence of 0.5 mM Mg. Therefore, Mn²⁺ is a good activator of the Ca^{2+} pump, in analogy with Mg²⁺.

On the other hand, in the presence of limiting calcium concentrations, an ATP-dependent Mn²⁺ uptake by the SR vesicles can be clearly demonstrated (Figure 2). The maximal level of Mn²⁺ retained by the SR vesicles is 100–150 nmol/mg, and most of it is rapidly released after addition of the ionophore A 23187 (Figure 2), indicating the formation of a Mn²⁺ concentration gradient across the membrane. Figure 2 also presents the passive diffusion of Mn²⁺ into the SR vesicles and shows that a 10-min preincubation time at 25 °C is sufficient

¹ Abbreviations used: Mops, 3-(N-morpholino)propanesulfonic acid; Mes, 2-(N-morpholino)ethanesulfonic acid; EGTA, ethylene glycol bis- $(\beta$ -aminoethyl ether)-N,N'-tetraacetic acid; FCCP, carbonyl cyanide m-fluorophenylhydrazone.

2914 BIOCHEMISTRY CHIESI AND INESI

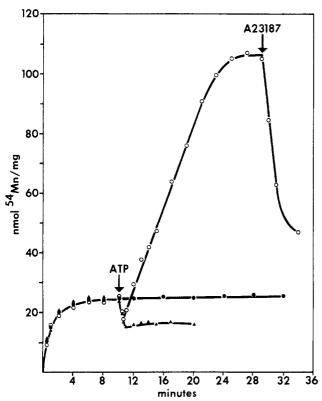


FIGURE 2: ATP-dependent Mn^{2+} fluxes through SR membranes. SR vesicles were added to the reaction mixture at a final concentration of 1.1 mg/mL. The reaction mixture contained 80 mM KCl, 1 mM [54 Mn]MnCl₂, 20 mM Mops, pH 6.9, and 100 μ M added CaCl₂ (\bullet and \bullet) or no added CaCl₂ (\bullet). In the latter case, the total contaminant Ca²⁺ was 14 μ M. The figure shows the passive influx of Mn²⁺ into the SR vesicles (\bullet). For the other curves presented, 1 mM ATP was added after 10 min (\bullet and O). The ionophore A 23187 (15 μ M) was added where indicated. 54 Mn retained by the microsomes was determined by the Millipore filtration technique.

to obtain equilibration of the vesicles with Mn²⁺. It is then apparent that in addition to being an activator of the calcium pump Mn²⁺ is also a weak competitor of calcium for the transport sites and can be actively transported in place of Ca²⁺, even though at slower rates.

It should be noted that addition of ATP is immediately followed by rapid release of a small amount of Mn²⁺ from the SR vesicles (Figures 2 and 3). Even in the absence of added calcium, addition of ATP produces a similar release of Mn²⁺, which is followed by the slower uptake of Mn²⁺. If Ca²⁺ is than added a few minutes after ATP, a burst of Ca²⁺ uptake is noted, which is not accompanied by release of Mn²⁺ (Figure 3). Therefore, the Mn²⁺ release which is observed on addition of ATP is not quantitatively or causually related to the uptake of Ca²⁺. Rather, it is likely that Mn²⁺ binding by the nucleotide is followed by reduction of the free Mn²⁺ concentration in the medium and dissociation of the divalent cation from weak binding sites on the SR vesicles. The presence of Mn²⁺ binding sites was previously reported by Kalbitzer et al. (1978).

Our experiments with Mn^{2+} show that this divalent cation can replace Mg^{2+} as an activator of the Ca^{2+} pump but that active transport of Ca^{2+} into the vesicles is not accompanied by a corresponding ejection of Mn^{2+} . Furthermore, Mn^{2+} is a weak competitor of Ca^{2+} for the transport sites.

 H^+ Fluxes. H^+ production in a reaction mixture containing SR vesicles and the required components for Ca²⁺ transport may be related directly to the hydrolytic ATPase reaction and/or to a transport mechanism including H^+ ejection from the SR vesicles. The amount of H^+ generated by the hydro-

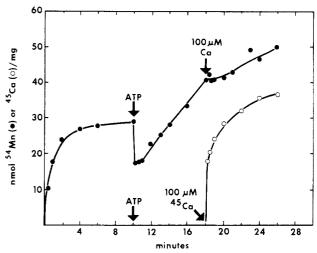


FIGURE 3: Effect of Ca^{2+} uptake on Mn^{2+} content of microsomes. The experiment was carried out essentially as described in Figure 2 with no Ca^{2+} added to the reaction mixture. After 10 min 2.5 mM ATP was added. 8 min after ATP addition, 100 μ M cold $CaCl_2$ was added. The ⁵⁴Mn content of the vesicles was followed throughout the experiment (\bullet). Ca^{2+} movements (O) were followed under identical experimental conditions with no radioactive labeled ⁵⁴Mn. At the time indicated 100 μ M [⁴⁵Ca]CaCl₂ was added.

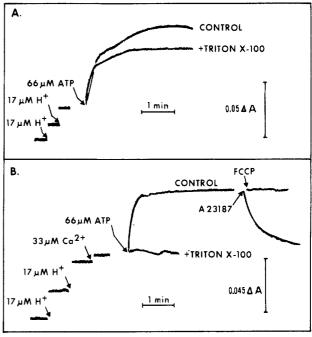


FIGURE 4: pH changes in the reaction medium during Ca^{2+} translocation. (A) Composition of the medium: 80 mM KCl, 2 mM Mops, pH 6.9, 5 mM MgCl₂, 100 μ M phenol red, 1 mg of SR per mL, 50 μ M CaCl₂. Additions were made as indicated in the figure. pH changes were detected as described under Materials and Methods with a dual-wavelength spectrophotometer. Wavelength pair was set at 560 and 600 nm. (B) Composition of the medium: 80 mM KCl, 2 mM Mes, pH 6.1, 5 mM MgCl₂, 40 μ M chlorphenol red, 1 mg of Sr per mL, 50 μ M CaCl₂. Wavelength pair was set at 488 and 577 nm. When required, the vesticular suspension was preincubated for 5 min in the presence of 0.1% Triton X-100. The final concentration of the ionophores A 23187 and FCCP was 20 and 5 μ M, respectively.

lytic reaction is dependent on the pH of the medium and the pK for H^+ dissociation from the reaction products (Nishimura et al., 1962). This amount can be estimated empirically by measuring the H^+ production corresponding to hydrolysis of a known aliquot of ATP in the presence of vesicles rendered leaky with Triton X-100. Under these conditions, we found that the H^+/ATP molar ratio is \sim 0.7, at pH 6.9. However,

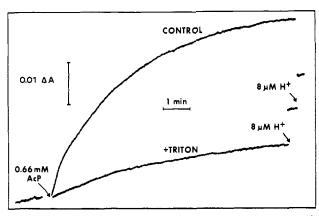


FIGURE 5: H⁺ efflux from SR vesicles during AcP-supported Ca²⁺ uptake. The experiment was carried out as described in Figure 4B. Reaction mixture: 80 mM KCl, 2 mM Mes, pH 6.0, 100 μ M CaCl₂, 0.66 mM MnCl₂, 40 μ M chlorphenol red, 1 mg of SR per mL. Wavelength: 488 and 577 nm. When present, Triton X-100 was 0.1%.

when intact vesicles are used an excess H⁺ production is noted (Figure 4A).

A better demonstration of the difference between *intact* and *leaky* vesicles is obtained by lowering the pH of the medium (pH 6.1), thereby preventing H⁺ dissociation from the product of the ATPase hydrolytic reaction. In this case, no significant H⁺ production is noted in the presence of *leaky* vesicles on addition of ATP, while 35-40 nmol of H⁺ per mg of protein was produced in the presence of *intact* vesicles (Figure 4B). It is noteworthy that the observed pH drop reverts (Figure 4B) to the original base line by addition of a Ca²⁺ ionophore (A 23187) and collapse of the Ca²⁺ gradient formed in the presence of ATP (Scarpa et al., 1972). On the contrary, no reversal is obtained by addition of a H⁺ ionophore (FCCP).

These experiments indicate that the observed H⁺ ejection is not primary but occurs as a consequence of ATP-dependent Ca²⁺ accumulation by the SR vesicles.

Proton ejection from the SR vesicles can be observed by using a variety of substrates for the ATPase reaction (e.g., ATP, ITP, or AcP) and in the presence of Mg²⁺ or Mn²⁺ as activators as long as the hydrolytic activity is coupled with Ca²⁺ accumulation by the SR vesicles. In fact, if AcP is used in place of ATP, a better time resolution of Ca²⁺ and H⁺ fluxes is obtained, owing to the slow rates of AcP utilization. It is noteworthy that during our experimentation with AcP, we found a more rapid utilization of this particular substrate when Mn²⁺, rather than Mg²⁺, was used as an activator.

H⁺ production following addition of AcP to *leaky* or *intact* vesicles is shown in Figure 5. Here again, H⁺ dissociation from the product of the hydrolytic reaction is minimal at pH 6.0. Therefore, H⁺ dissociation from SR vesicles which are permitted to accumulate Ca²⁺ can be clearly demonstrated.

The initial rates of H^+ ejection and Ca^{2+} transport in the presence of AcP can be increased by raising the Mn^{2+} concentration (Figure 6). In these experiments we never noted an initial burst or a lag period of H^+ ejection relative to Ca^{2+} transport. Rather, the two fluxes appeared to proceed simultaneously, although the rates of net H^+ ejection were generally lower than those of Ca^{2+} uptake.

Time resolution of H⁺ ejection in the presence of ATP required the use of stopped-flow methods, owing to the rapid rates obtained with this substrate. H⁺ production (at pH 6.1) following addition of ATP to leaky (a) and intact (b) vesicles is shown in Figure 7. The two curves are then substracted to yield trace c which corresponds to actual ejection of H⁺. A comparison of trace c with a time curve of Ca²⁺ uptake reveals that the two phenomena occur simultaneously and the

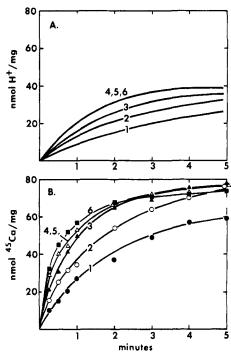


FIGURE 6: Mn^{2+} dependency of H^+ efflux and Ca^{2+} uptake in the presence of AcP. (A) H^+ fluxes were measured as described in Figure 5 in a medium containing 80 mM KCl, 2 mM Mes, pH 6.0, 40 μ M chlorphenol red, 0.5 mg of SR per mL, and 77 μ M CaCl₂. The concentration of MnCl₂ was (1) 83, (2) 166, (3) 333, (4) 666, (5) 1330, and (6) 3330 μ M. Reactions were started by the addition of 0.66 mM AcP. At each MnCl₂ concentration H^+ fluxes were measured in the presence and in the absence of Triton as shown in Figure 5. The difference of the curves thus obtained was calculated and presented in the Figure. (B) The experimental conditions were the same as described under (A). However, ⁴⁵Ca tracer was added and Ca^{2+} uptake was measured with the Millipore filtration technique.

H⁺/Ca²⁺ molar ratio is ~1 at the beginning of the reaction. Independent of the substrate used, the maximal quantity of ejected H⁺ is 35-40 nequiv/mg of protein. It should be noted, however, that when total Ca²⁺ uptake is varied by limiting the amount of calcium which is available in the reaction mixture, the net amount of ejected H⁺ also varies (Figure 8). In fact, even the molar ratio between net H⁺ ejection and Ca²⁺ uptake is variable, being ~1 at low levels of Ca²⁺ uptake and lower than 1 at higher levels of Ca²⁺ uptake.

H+ Released during Titration of the High-Affinity Binding Sites with Ca2+. It has been previously reported that passive binding of Ca²⁺ to various classes of sites in SR vesicles results in the release of as much as 150 nmol of H⁺ per mg of protein (Carvalho, 1972). More specifically, it is known that pH can affect Ca^{2+} translocation by shifting the K_m for the Ca^{2+} enzyme complex (Verjovski-Almeida & de Meis, 1977). In addition, the apparent Ca2+ binding constant to the high-affinity binding sites of the ATPase molecules decreases with pH (Meissner, 1973). Therefore, we attempted to investigate if the pH effects are due to actual exchange of H+ with Ca2+ ions in the transport sites. Figure 9 presents the titration of the high-affinity binding sites of the SR vesicles with Ca²⁺ while the pH was kept constant at 6.0. It can be seen that along with the saturation of the binding sites with Ca²⁺ a concomitant release of H⁺ occurs. At pH 6.0 the ratio of Ca²⁺ bound to H^+ liberated is ~ 1 . It should be pointed out that the apparent K_d and the total amount of the Ca^{2+} binding sites $[(1-2) \times 10^{-5} \text{ M} \text{ and } 8-11 \text{ nmol of } \text{Ca}^{2+} \text{ per mg, respectively}]$ obtained in Figure 9 correspond very closely to those values obtained at pH 6.0 in independent experiments using equi2916 BIOCHEMISTRY CHIESI AND INESI

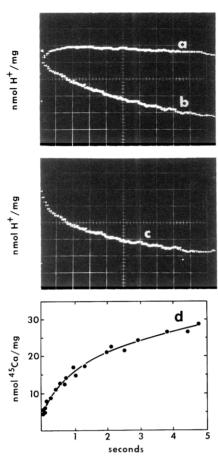


FIGURE 7: Rapid kinetics of Ca^{2+} and H^+ movements through SR membranes upon addition of ATP. The reaction medium contained 80 mM KCl, 5 mM MgCl₂. 1.5 mM Mes, pH 6.1, 40 μ M chlorphenol red, 100 μ M CaCl₂, and 1 mg of SR per mL. Final ATP concentration was 250 μ M. Details of the experimental procedure are given under Materials and Methods. Proton fluxes (a-c) were carried out with the aid of a Dionex D-137 dual-detector stopped-flow spectrophotometer (wavelenght pair set at 577 and 630 nm) interfaced to a Northstar Horizon computer. ⁴⁵Ca uptake measurements (d) were performed on a Dionex D-133 rapid mixing apparatus using 10 mM EGTA as the quencher. (a) Proton flux obtained with leaky vesicles (0.2% Triton X-100); (b) proton flux obtained with intact SR; (c) curve obtained by subtracting (a) from (b). Divisions in the abscissa and ordinates correspond to 0.5 s and 8 nmol of H⁺ per mg of protein, respectively; (d) Ca^{2+} uptake.

librium binding techniques (not shown here).

Experiments with Reconstituted SR. The functional relevance of H⁺ fluxes may be evaluated by measuring Ca²⁺ transport in SR vesicles in which H⁺ permeability is modified by the addition of a specific ionophore (e.g., FCCP). However, we found that FCCP does not alter the ability of the SR vesicles to eject H⁺ (Figure 4) or to accumulate Ca²⁺ (Scarpa et al., 1972; Madeira, 1978) following addition of ATP or AcP. This indicates that (1) the observed H⁺ ejection is not due to a primary H⁺ pump since a primary H⁺ gradient is expected to collapse following addition of FCCP, (2) the permeability of native SR vesicles is sufficiently high to permit a secondary H⁺ ejection, and, therefore, (3) the relevance of such a H⁺ ejection to Ca²⁺ transport cannot be tested by increasing the H⁺ permeability of native vesicles.

We then used SR vesicles which were reconstituted with high ratios of (hexogenous) phospholipid to protein (Chiesi et al., 1978). The reconstitution process results in loss of much of the protein other than the M_r 100 000 ATPase polypeptide and a minor component of $\sim 50\,000$, as demonstrated by NaDodSO₄ gel electrophoresis. Such reconstituted vesicles have a low passive permeability to solutes (Knowles & Racker,

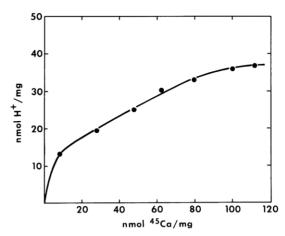


FIGURE 8: Correlation between total amount of Ca^{2+} and H^+ fluxes. The buffer consisted of 80 mM KCl, 0.66 mM MnCl₂, 2 mM Mes, pH 6.0, 40 μ M chlorphenol red, and 0.8 mg of SR per mL. Total $CaCl_2$ concentration ranged from 8 μ M up to 210 μ M in separate experiments. Reactions were started by the addition of 0.66 mM AcP. Total Ca^{2+} uptake was determined in the presence of traces of ^{45}Ca with the Millipore filtration technique. Maximal H^+ efflux was calculated from the difference obtained with intact and leaky vesicles (Triton X-100) as described in Figure 6.

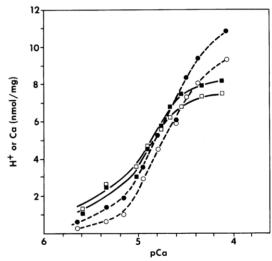


FIGURE 9: Passive Ca^{2+} binding and H^+ release by SR vesicles. The SR vesicles were treated with a chelating resin in order to remove the contaminating Ca^{2+} . The Ca^{2+} binding sites of the preparation were titrated by adding small amounts of $CaCl_2$ to 10 mL of a solution containing 80 mM KCl, 5 mM MgCl₂, 2 mM Mops, pH 6.0, and 2 to 3 mg of SR protein per mL. Protons released during the titration were neutralized and measured with a pH stat coupled with a syringe containing 1 mM NaOH. Ca^{2+} bound to the preparation and Ca^{2+} free were determined by using ^{45}Ca and a filtration technique. Further details on the experimental procedure are described under Materials and Methods. The figure presents the results obtained with two different SR preparations $(O, \bullet and \Box, \blacksquare, respectively)$. Full symbols correspond to Ca^{2+} binding data and empty symbols to H^+ release data.

1975) but are able to accumulate up to 130 nmol of calcium per mg of protein (Figure 10) in reaction mixtures containing ATP and no added calcium precipitating agents (e.g., oxalate). The accumulated calcium is rapidly released by addition of the calcium ionophore A 23187.

Contrary to the experiments with native SR vesicles, it can be shown that ATP-dependent Ca²⁺ uptake by reconstituted vesicles is significantly increased by raising the membrane permeability to H⁺ by the addition of FCCP (Figure 10). We also obtained a higher Ca²⁺ uptake by raising membrane permeability to K⁺ by the addition of valinomycin. No effect of valinomycin was noted in reaction mixtures containing Na⁺

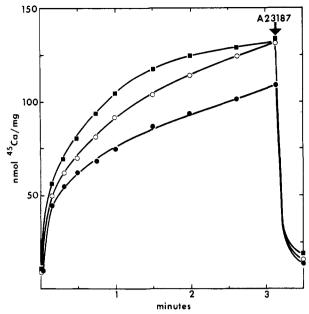


FIGURE 10: Effect of valinomycin or FCCP on Ca²⁺ uptake by reconstituted vesicles. Experiments were carried out in a medium containing 80 mM KCl, 20 mM Mops, pH 6.9, 5 mM MgCl₂, 100 μ M ⁴⁵CaCl₂ (\bullet), and when required 2 μ M FCCP (\blacksquare) or 2 μ g/mL valinomycin (\circ). Reconstituted vesicles were prepared as described under Materials and Methods. 150 μ g of protein per mL was preincubated at room temperature for 10 min in the reaction medium. Ca²⁺ uptake was initiated by the addition of 1 mM ATP and determined with the Millipore filtration technique. The concentration of the Ca²⁺ ionophore A 23187 was 20 μ M. Valinomycin had no noticeable effect when the medium was supplemented with 80 mM NaCl instead of KCl.

in place of K^+ . The valinomycin effect was explained by Zimniak & Racker (1978) by postulating that the Ca^{2+} pump is electrogenic and that the limit imposed by charge displacement is offset by passive K^+ fluxes in the opposite direction.

In agreement with the observations of Zimniak & Racker (1978) and with our own observations on FCCP, we found that the valinomycin effect can be demonstrated much more clearly on reconstituted vesicles than on native vesicles. In this respect, the difference between the two systems may be related to the presence of passive channels for monovalent cations (Miller, 1978; McKinley & Meissner, 1978) in the native membrane which are not incorporated efficiently in the reconstituted vesicles.

Discussion

The experiments reported here were designed to find out whether cation efflux from SR vesicles occurs after addition of ATP in relation to inward Ca²⁺ transport.

First the hypothesis of a Ca²⁺-Mg²⁺ antiport was tested by measuring fluxes of a radioactive Mn²⁺ isotope. Originally, this hypothesis was based on the Mg²⁺ requirement (Inesi et al., 1970; Kanazawa et al., 1971) for the hydrolytic step of SR ATPase, even though Mg²⁺ fluxes were never measured under relevant conditions.

We found that Mn^{2+} is able to function quite adequately as an ATPase activator in place of Mg^{2+} . A hypothetical Ca^{2+} - Mn^{2+} exchange mechanism implies that the Mn^{2+} efflux from the SR vesicles is of the same order of magnitude as the Ca^{2+} translocation in the opposite direction. Measurements of the Mn^{2+} efflux rate and magnitude could be obscured by a rapid recycling of the cation via either passive diffusion or active translocation inside the SR vesicles. However, these possibilities are excluded by the experiment presented in Figure

3 since (a) an inside/outside concentration gradient of Mn^{2+} was produced by active transport before the addition of Ca^{2+} , so that Mn^{2+} – Ca^{2+} exchange would be favored during Ca^{2+} transport, and (b) ATP-dependent Mn^{2+} uptake by the microsomes was negligible in the presence of 100 μ M Ca^{2+} in the extravesicular medium (Figure 2), especially if compared with the rapid rate of the Ca^{2+} translocation (Figures 1 and 3). The results presented in Figure 3, therefore, clearly show that ejection of Mn^{2+} from the SR vesicles does not occur concomitantly with ATP-dependent Ca^{2+} uptake.

If the experiments on Mn²⁺ can be extrapolated to Mg²⁺, our observations do not support the hypothesis of a Ca²⁺-Mg²⁺ antiport in the Ca²⁺ pump of SR.

A second line of experimentation was directed to study H⁺ fluxes. Ejections of H⁺ from SR vesicles following addition of ATP was first reported by Madeira (1978, 1979), who attributed this phenomenon to a primary H⁺ pump and implied that Ca²⁺ accumulation by SR is secondary to a H⁺ gradient.

With our experiments we were able to confirm that, in addition to H⁺ dissociation from the products of the hydrolytic reactions, a significant amount of H⁺ is ejected from SR vesicles during Ca²⁺ transport. However, kinetic resolution of H⁺ ejection shows that this phenomenon never precedes Ca²⁺ uptake. Furthermore, addition of FCCP, which is expected to increase passive membrane permeability to H⁺ and to collapse a primary H⁺ gradient, does not alter either H⁺ ejection or Ca²⁺ accumulation in the presence of ATP. On the other hand, collapse of the Ca²⁺ gradient by addition of a Ca²⁺ ionophore reverses the H⁺ ejection. Therefore, our observations indicate that H⁺ efflux from SR vesicles cannot be attributed to a primary H⁺ pump but is rather a secondary phenomenon occurring as a consequence of ATP-dependent Ca²⁺ uptake.

The increased Ca²⁺ uptake observed with reconstituted vesicles in the presence of FCCP suggests that H⁺ ejection plays some role during active transport of Ca²⁺. In this regard, the analogous effect of valinomycin (Zimniak & Racker, 1978) indicates that efflux of K⁺ and/or H⁺ may counterbalance, at least in part, charge displacement by the Ca²⁺ pump. It is also likely that anion (Cl⁻) influx also contributes to offsetting charge displacement by the pump, since the SR membrane appears to be significantly permeable to monovalent cations and anions (McKinley & Meissner, 1978; Kometani & Kasai, 1978).

An intriguing question is whether H^+ ejection occurs through a specific mechanism directly linked to the Ca^{2+} pump in addition to diffusion passively through independent channels. In this regard, the parallel kinetics and constant stoichiometry observed within the first second of reaction (Figure 7) suggest that H^+ is involved in an exchange reaction with Ca^{2+} . In fact, H^+ exchange with Ca^{2+} is commonly observed in Ca^{2+} binding reactions of several organic molecules. Specifically, Figure 9 shows that the binding of Ca^{2+} to the activating (e.g., transport) sites of SR ATPase displaces H^+ .

To account for a cyclic mechanism of vectorial transport, H^+ should be acquired by the transport site when Ca^{2+} is released and the site is in a low-affinity state which is exposed to the inner side of the vesicles. H^+ would then be released when the site is in a state of high affinity for Ca^{2+} on the outer surface of the vesicles.

On the assumption that the binding sites acquire H^+ upon dissociation inside the vesicles, the stoichiometry of protonation depends on the pK of the sites and the intravesicular pH. On the basis of the measurements obtained within the first second of reaction (Figure 7) and also supported by the titration

2918 BIOCHEMISTRY CHIESI AND INESI

results (Figure 9), it appears that even at pH 6.1 \sim 1 H⁺ exchanges for 1 Ca²⁺, and therefore the pump is still electrogenic if not compensated for by passive fluxes of permeable electrolytes such as K⁺ (Zimniak & Racker, 1978) and/or Cl⁻.

As Ca²⁺ accumulation proceeds, the stoichiometry of *net* H⁺ ejection decreases (Figure 8), probably due to reentry of H⁺ into the vesicles through independent channels.

Under conditions permitting maximal Ca²⁺ uptake (120–180 nmol of calcium per mg of protein), maximal (net) ejection of H⁺ is 35-40 nmol/mg of protein. On the assumption that before addition of ATP the intravesicular pH is approximately equal to that of the medium (pH 6 to 7) (Nomura & Nakamaru, 1976) and that the intravesicular volume is 5-7 μ L/mg of protein (Duggan & Martonosi, 1970), the amount of free H⁺ inside the vesicles should not exceed a few picomoles. Therefore, H⁺ ejection of the observed magnitude requires H⁺ dissociation from buffering systems or divalent cation binding sites (Carvalho, 1972). The observed reduction of H⁺/Ca²⁺ ratios in the latter part of the reactions implies that a significant amount of H⁺ is recycled after reentering the vesicles through independent channels. This explains the stimulating effect of FCCP on the Ca²⁺ translocation of reconstituted vesicles which have a limited permeability for reentry of H⁺ and are deprived of calcium binding proteins (other than ATPase) which may be a significant source of H⁺ in native vesicles.

A remarkable feature of the proposed mechanism is that it provides H⁺ for a H⁺-Ca²⁺ antiport, while a rapid reduction of the intravesicular pH is avoided by buffering systems and recycling pathways.

Acknowledgments

We thank Mark Kurzmack from our laboratory for providing the computer programs.

References

Carvalho, A. P. (1972) Eur. J. Biochem. 27, 491.

Chen, P. S., Toribara, T. Y., & Warner, H. (1956) Anal. Biochem. 28, 1756.

Chiesi, M., & Inesi, G. (1979) J. Biol. Chem. 254, 10370.
Chiesi, M., Peterson, S. W., & Acuto, O. (1978) Arch. Biochem. Biophys. 189, 132.

Duggan, P. F., & Martonosi, A. (1970) J. Gen. Physiol. 56, 147.

Eletr, S., & Inesi, G. (1972) Biochim. Biophys. Acta 282, 174. Inesi, G., Maring, E., Murphy, A. J., & McFarland, B. H. (1970) Arch. Biochem. Biophys. 138, 285.

Kalbitzer, H. R., Stehlik, D., & Hasselbach, W. (1978) Eur. J. Biochem. 82, 245.

Kanazawa, T., Yamada, S., Yamamoto, T., & Tonomura, Y. (1971) J. Biochem. (Tokyo) 70, 95.

Knowles, A. F., & Racker, E. (1975) J. Biol. Chem. 250, 3538.
Kometani, T., & Kasai, M. (1978) J. Membr. Biol. 41, 295.
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951) J. Biol. Chem. 193, 265.

Madeira, V. M. C. (1978) Arch. Biochem. Biophys. 185, 316. Madeira, V. M. C. (1979) Arch. Biochem. Biophys. 193, 22. Martonosi, A., & Feretos, R. (1964) J. Biol. Chem. 239, 648. McKinley, D., & Meissner, G. (1978) J. Membr. Biol. 44, 159. Meissner, G. (1973) Biochim. Biophys. Acta 298, 906. Miller, C. (1978) J. Membr. Biol. 40, 1.

Nishimura, M., Ito, T., & Chance, B. (1962) Biochim. Biophys. Acta 59, 177.

Nomura, K., & Nakamaru, Y. (1976) J. Biochem. (Tokyo) 80, 1393.

Scarpa, A., Baldassarre, J., & Inesi, G. (1972) *J. Gen. Physiol.* 60, 735.

Verjovski-Almeida, S., & de Meis, L. (1977) Biochemistry 16, 329.

Verjovski-Almeida, S., Kurzmack, M., & Inesi, G. (1978) Biochemistry 17, 5006.

Yamada, S., & Tonomura, Y. (1972) J. Biochem. (Tokyo) 72, 417.

Zimniak, P., & Racker, E. (1978) J. Biol. Chem. 253, 4631.